<listing id="vjp15"></listing><menuitem id="vjp15"></menuitem><var id="vjp15"></var><cite id="vjp15"></cite>
<var id="vjp15"></var><cite id="vjp15"><video id="vjp15"><menuitem id="vjp15"></menuitem></video></cite>
<cite id="vjp15"></cite>
<var id="vjp15"><strike id="vjp15"><listing id="vjp15"></listing></strike></var>
<var id="vjp15"><strike id="vjp15"><listing id="vjp15"></listing></strike></var>
<menuitem id="vjp15"><strike id="vjp15"></strike></menuitem>
<cite id="vjp15"></cite>
<var id="vjp15"><strike id="vjp15"></strike></var>
<var id="vjp15"></var>
<var id="vjp15"></var>
<var id="vjp15"><video id="vjp15"><thead id="vjp15"></thead></video></var>
<menuitem id="vjp15"></menuitem><cite id="vjp15"><video id="vjp15"></video></cite>
<var id="vjp15"></var><cite id="vjp15"><video id="vjp15"><thead id="vjp15"></thead></video></cite>
<var id="vjp15"></var>
<var id="vjp15"></var>
<menuitem id="vjp15"><span id="vjp15"><thead id="vjp15"></thead></span></menuitem>
<cite id="vjp15"><video id="vjp15"></video></cite>
<menuitem id="vjp15"></menuitem>
Weibull分布,Weibull distribution
1)Weibull distributionWeibull分布
1.Acceleration corrosion factor analysis for fatigue critical components based on the Weibull distribution;基于Weibull分布的疲勞加速腐蝕因子分析
2.On the lower confidence limits for the conditional reliability in the case of Weibull distribution under time censoring and no failure;關于定時截尾無失效數據情形下Weibull分布條件可靠度的置信下限
3.Reliability Analysis of Weibull Distribution;Weibull分布可靠性分析
英文短句/例句

1.Estimation of parameters of mixed Weibull distribution;混合Weibull分布的參數估計
2.The Statistical Analysis of Geometric Distribution and Weibull Distribution;幾何分布和Weibull分布產品的統計分析
3.Stochastic Comparisons of Order Satistics from Weibull Distributions;基于Weibull分布的次序統計量的隨機比較
4.Parameter Estimation for Weibull Distribution Based on Incomplete Samples;不完全樣本下Weibull分布的參數估計
5.Parameter Estimation of Lifetime Data in Weibull Distribution;Weibull分布壽命數據的參數估計
6.Testing on Upper and Lower Outliers in Two-parameter Weibull Samples;Weibull分布場合雙向異常值的檢驗
7.An Inventory Model for Items with Weibull Distribution Deterioration Rate under Stock-dependent Demand;Weibull分布變質物品庫存模型研究
8.Bayes Estimation of the Unlost-Efficacy-Data Under Weibull Distribution;Weibull分布場合無失效數據的Bayes估計
9.Bayes Estimators for Parameters of the Two-parameters Weibull Model雙參數Weibull分布模型的貝葉斯估計
10.Shrinkage Estimation of Generalized Weibull Parameter in Censored Samples廣義Weibull分布參數的收縮估計
11.The Forecast of Equipment Life Loss Based on Weibull Distribution基于Weibull分布的設備壽命損耗預測
12.Life Estimation of Electric Equipment Based on Weibull Distribution基于Weibull分布的電力設備壽命損耗預測
13.Complete Data Parameters Estimation under Weibull DistributionWeibull分布在完全數據條件下的參數估計
14.Modeling and Simulation of Correlated Weibull Radar Clutter相關Weibull分布雷達雜波的建模與仿真
15.Application of the Weibull Distribution to Recognition of GIS PD PhenomenaWeibull分布在GIS局部放電識別中的應用
16.Hypothesis Testing for Parameters of Interest of the Weibull DistributionWeibull分布興趣參數的假設檢驗
17.The EM Algorithm of Parameter Estimation of Weibull Distribution under Type-I Censoring Sample定時截尾下Weibull分布參數估計的EM算法
18.Research on controlling strategy of inventory based on Weibull distribution一種基于Weibull分布的庫存控制策略
相關短句/例句

Weibull modelWeibull分布
3)Weibull distributionWeibull 分布
4)Semi Weibull distributionSemi-Weibull分布
5)Weibull distribution methodWeibull分布法
6)Phased Weibull distribution分段Weibull分布
延伸閱讀

Weibull分布Weibull分布Weibull distribution  W七i加111分布【叭陽lb回1山目對lx幣閱;Be涌y月月ap二npe解-肥H“e」 隨機變量弋的一種專門的概率分布(prohabi】itydistribution),其分布函數為 「l一ex。丁一r二二衛生丫飛.若:,。._,、}I、a/、f、‘、,,尸,a,拜)一氣、、1.、 〔o,若。簇拼,其中p是分布曲線的形狀參數,。是尺度參數,而群是移位參數.分布族(*)以【l]的作者w.v況ibull的姓命名.W,W己lbuU首先用此分布逼近鋼抗拉強度疲勞試驗的極值數據,并且提出估計(*)中分布參數的方法.W匕ibul】分布、是順序統計量序列的第三類極值分布,它廣泛用于描繪諸如滾珠軸承、真空設備、電氣元件故障的規律性.指數分布(exponentinldistribution)(夕=l)和Ra洲響少分布(Rey】eigh面tri-bution)(p二2)是Weibull分布的特殊情形.分布函數(*)的曲線不屬于P岌lrson分布族.編有計算Weibull分布函數的輔助表(見【2]).在拜二o的情形下,水平q分位數等于武一ln(l一們]’/P, 一/.k、 E群一獷r又’+貢少,“一‘,2,二‘, 。x、、一[r(,·號)一rZ(,·合)」,其’}」f(x)是r函數(多~一角n而。n);變異系數、偏斜度和超越系數(e%o乏石以又幣cient)都與。無關,這使得容易編制其數值表和求參數估計值的輔助表.當p)1時,Weib曲分布是單峰的,其眾數等于。(尸一l)’‘“,而故障的風險函數幾(:)二p:“一’/。p是不減的.當p<1時,函數又(t)單調減小.可以繪制所謂W亡ib川1概率紙(W己ibul」pro加biljty Paper;131).在此概率紙上,F,.(t;p,。,0)的圖形是一條直線;當l‘>o時F、(r;尹,『,拜)的圖象是凹的,當拜<01付是凸的.用分位數法估計M陽ibull分布的參數,所得方程本質上比用最大似然法更為簡單.利用水平0.24和0.93分位數,(當#=0時)由分位數法求的參數p和a估計量之聯合漸近效率最高(等于0.以).用對數正態分布函數。〔衛】止滬止竺」(小(x)是標準正態分布函數,一的
韩国伦理电影