專利名稱:支座角位移溫度變化時基于索力監測的松弛索識別方法
技術領域:
斜拉橋、懸索橋、桁架結構等結構有一個共同點,就是它們有許多承受拉伸載荷的部件,如斜拉索、主纜、吊索、拉桿等等,該類結構的共同點是以索、纜或僅承受拉伸載荷的桿件為支承部件,為方便起見本方法將該類結構表述為“索結構”。隨著環境溫度的變化,索結構的溫度也會發生變化,在索結構溫度發生變化時,在有支座角位移(例如支座繞坐標軸X、Y、Z的轉動,實際上就是支座繞坐標軸X、Y、Z的角位移)時,本方法基于索力監測來識別索結構的支承系統(指所有承載索、及所有起支承作用的僅承受拉伸載荷的桿件,為方便起見,本專利將該類結構的全部支承部件統一稱為“索系統”,但實際上索系統不僅僅指支承索,也包括僅承受拉伸載荷的桿件,本方法中用“支承索”這一名詞指稱所有承載索及所有起支承作用的僅承受拉伸載荷的桿件)中的需調整索力的支承索(對桁架結構就是指受損的僅承受拉伸載荷的桿件),屬工程結構健康監測領域。
背景技術:
索系統通常是索結構(特別是大型索結構,例如大型斜拉橋、懸索橋)的關鍵組成部分,由于松弛等原因,新結構竣工一段時間后支承索的索力通常會發生變化,結構長期服役后其支承索的松弛也會引起支承索索力的變化,這些變化都將引起結構內力的變化,對結構的安全造成不良影響,嚴重時將會引起結構的失效,因此準確及時地識別需調整索力的支承索是非常必要的。支承索系統的健康狀態發生變化(例如發生松弛、損傷等)后,會引起結構的可測量參數的變化,例如會引起支承索索力的變化,實際上索力的變化包含了索系統的健康狀態信息,也就是說可以利用索力數據判斷結構的健康狀態,可以基于索力監測(本方法將被監測的索力稱為“被監測量”,后面提到“被監測量”就是指被監測的索力)來識別受損索(本方法也稱之為有健康問題的支承索,指支承索受損、松弛或兼而有之)。被監測量除了受索系統健康狀態的影響外,還會受索結構溫度變化(常常會發生)和索結構支座角位移(常常會發生)的影響,在索結構溫度發生變化和索結構支座發生角位移的條件下,如果能夠基于對被監測量的監測來實現對有健康問題的支承索的識別,對索結構的安全具有重要的價值,目前還沒有一種公開的、有效的健康監測系統和方法解決了此問題。在索結構有支座角位移和溫度變化時,為了能對索結構的索系統的健康狀態有可靠的監測和判斷,必須有一個能夠合理有效的建立每一個被監測量變化同索系統中所有索的健康狀況間的關系的方法,基于該方法建立的健康監測系統可以給出更可信的索系統的健康評估。
發明內容
技術問題本方法的目的是在索結構有支座角位移和溫度變化時,針對索結構中索系統的健康監測問題,公開了一種基于索力監測的、能夠合理有效地監測索結構中索系統的健康監測方法。
依據支承索的索力變化的原因,可將支承索的索力變化分為兩種情況一是支承索受到了損傷,例如支承索出現了局部裂紋和銹蝕等等;二是支承索并無損傷,但索力也發生了變化,出現這種變化的主要原因之一是支承索自由狀態(此時索張力也稱索力為0)下的索長度(稱為自由長度,本方法專指支承索兩支承端點間的那段索的自由長度)發生了變化。本方法的主要目的之一就是要識別出自由長度發生了變化的支承索,并識別出它們的自由長度的改變量,此改變量為該索的索力調整提供了直接依據。支承索自由長度發生變化的原因不是單一的,為了方便,本方法將自由長度發生變化的支承索統稱為松弛索。在本方法中用索系統健康監測系統指松弛索識別系統,用索系統健康評估方法指松弛索識別方法,或者說在本方法在“健康監測”通常可用“松弛索識別”替代。技術方案本方法由三部分組成。分別是建立索系統健康監測系統所需的知識庫和參量的方法、基于知識庫(含參量)和實測被監測量的索系統健康狀態評估方法、健康監測系統的軟件和硬件部分。、
本方法的第一部分建立用于索系統健康監測的知識庫和參量的方法。具體如下I.首先確定“本方法的索結構的溫度測量計算方法”。由于索結構的溫度可能是變化的,例如索結構的不同部位的溫度是隨著日照強度的變化而變化、隨著環境溫度的變化而變化的,索結構的表面與內部的溫度有時可能是隨時間變化的,索結構的表面與內部的溫度可能是不同的,索結構的表面與內部的溫度差是隨時間變化的,這就使得考慮溫度條件時的索結構的力學計算和監測相當復雜,為簡化問題、減少計算量和降低測量成本,更是為了提高計算精度,本方法提出“本方法的索結構的溫度測量計算方法”,具體如下第一步,查詢或實測得到索結構組成材料及索結構所處環境的隨溫度變化的傳熱學參數,利用索結構的設計圖、竣工圖和索結構的幾何實測數據,利用這些數據和參數建立索結構的傳熱學計算模型。查詢索結構所在地不少于2年的近年來的氣象資料,統計得到這段時間內的陰天數量記為T個陰天,統計得到T個陰天中每一個陰天的0時至次日日出時刻后30分鐘之間的最高氣溫與最低氣溫,日出時刻是指根據地球自轉和公轉規律確定的氣象學上的日出時刻,可以查詢資料或通過常規氣象學計算得到所需的每一日的日出時亥IJ,每一個陰天的0時至次日日出時刻后30分鐘之間的最高氣溫減去最低氣溫稱為該陰天的日氣溫的最大溫差,有T個陰天,就有T個陰天的日氣溫的最大溫差,取T個陰天的日氣溫的最大溫差中的最大值為參考日溫差,參考日溫差記為Al;。查詢索結構所在地和所在海拔區間不少于2年的近年來的氣象資料或實測得到索結構所處環境的溫度隨時間和海拔高度的變化數據和變化規律,計算得到索結構所在地和所在海拔區間不少于2年的近年來的索結構所處環境的溫度關于海拔高度的最大變化率△ Th,為方便敘述取ATh的單位為。C/m。在索結構的表面上取“R個索結構表面點”,后面將通過實測得到這R個索結構表面點的溫度,稱實測得到的溫度數據為“R個索結構表面溫度實測數據”,如果是利用索結構的傳熱學計算模型,通過傳熱計算得到這R個索結構表面點的溫度,就稱計算得到的溫度數據為“R個索結構表面溫度計算數據”。在索結構的表面上取“R個索結構表面點”時,“R個索結構表面點”的數量與分布必須滿足的條件在后面敘述。從索結構所處的最低海拔到最高海拔之間,在索結構上均布選取不少于三個不同的海拔高度,在每一個選取的海拔高度處、在水平面與索結構表面的交線處至少選取兩個點,從選取點處引索結構表面的外法線,所有選取的外法線方向稱為“測量索結構沿壁厚的溫度分布的方向”,測量索結構沿壁厚的溫度分布的方向與“水平面與索結構表面的交線”相交,在選取的測量索結構沿壁厚的溫度分布的方向中必須包括索結構的向陽面外法線方向和索結構的背陰面外法線方向,沿每一個測量索結構沿壁厚的溫度分布的方向在索結構中均布選取不少于三個點,特別的,對于支承索沿每一個測量索結構沿壁厚的溫度分布的方向僅僅取一個點,即僅僅測量支承索的表面點的溫度,測量所有被選取點的溫度,測得的溫度稱為“索結構沿厚度的溫度分布數據”,其中沿與同一“水平面與索結構表面的交線”相交的、“測量索結構沿壁厚的溫度分布的方向”測量獲得的“索結構沿厚度的溫度分布數據”,在本方法中稱為“相同海拔高度索結構沿厚度的溫度分布數據”,設選取了 H個不同的海拔高度,在每一個海拔高度處,選取了 B個測量索結構沿壁厚的溫度分布的方向,沿每個測量索結構沿壁厚的溫度分布的方向在索結構中選取了 E個點,其中H和E都不小于3,B不小于2,特別的,對于支承索E等于1,計索結構上“測量索結構沿厚度的溫度分布數據的點”的總數為HBE個,后面將通過實測得到這HBE個“測量索結構沿厚度的溫度分布數據的點”的溫度,稱實測得到的溫度數據為“HBE個索結構沿厚度溫度實測數據”,如果是利用索結構的傳熱學計算模型,通過傳熱計算得到這HBE個測量索結構沿厚度的溫度分布數據的點的溫度,就稱計算得到的溫度數據為“HBE 個索結構沿厚度溫度計算數據”;本方法中將在每一個選取的海拔高度處“相同海拔高度索結構沿厚度的溫度分布數據”的個數溫度分布數據”。在索結構所在地按照氣象學測量氣溫要求選取一個位置,將在此位置實測得到符合氣象學測量氣溫要求的索結構所在環境的氣溫;在索結構所在地的空曠無遮擋處選取一個位置,該位置應當在全年的每一日都能得到該地所能得到的該日的最充分的日照,在該位置安放一塊碳鋼材質的平板,稱為參考平板,該參考平板的一面向陽,稱為向陽面,參考平板的向陽面是粗糙的和深色的,參考平板的向陽面應當在全年的每一日都能得到一塊平板在該地所能得到的該日的最充分的日照,參考平板的非向陽面覆有保溫材料,將實時監測得到參考平板的向陽面的溫度。本方法中對同一個量實時監測的任何兩次測量之間的時間間隔不得大于30分鐘,測量記錄數據的時刻稱為實際記錄數據時刻。第二步,實時監測得到上述R個索結構表面點的R個索結構表面溫度實測數據,同時實時監測得到前面定義的索結構沿厚度的溫度分布數據,同時實時監測得到符合氣象學測量氣溫要求的索結構所在環境的氣溫數據;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的索結構所在環境的氣溫實測數據序列,索結構所在環境的氣溫實測數據序列由當日日出時刻到次日日出時刻后30分鐘之間的索結構所在環境的氣溫實測數據按照時間先后順序排列,找到索結構所在環境的氣溫實測數據序列中的最高溫度和最低溫度,用索結構所在環境的氣溫實測數據序列中的最高溫度減去最低溫度得到索結構所在環境的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,記為AT6max ;由索結構所在環境的氣溫實測數據序列通過常規數學計算得到索結構所在環境的氣溫關于時間的變化率,該變化率也隨著時間變化;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的參考平板的向陽面的溫度的實測數據序列,參考平板的向陽面的溫度的實測數據序列由當日日出時刻到次日日出時刻后30分鐘之間的參考平板的向陽面的溫度的實測數據按照時間先后順序排列,找到參考平板的向陽面的溫度的實測數據序列中的最高溫度和最低溫度,用參考平板的向陽面的溫度的實測數據序列中的最高溫度減去最低溫度得到參考平板的向陽面的溫度的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,記為Δ Tpmax ;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的所有R個索結構表面點的索結構表面溫度實測數據序列,有R個索結構表面點就有R個索結構表面溫度實測數據序列,每一個索結構表面溫度實測數據序列由一個索結構表面點的當日日出時刻到次日日出時刻后30分鐘之間的索結構表面溫度實測數據按照時間先后順序排列,找到每一個索結構表面溫度實測數據序列中的最高溫度和最低溫度,用每一個索結構表面溫度實測數據序列中的最高溫度減去最低溫度得到每一個索結構表面點的溫度的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,有R個索結構表面點就有R個當日日出時刻到次日日出時刻后30分鐘之間的最大溫差數值,其中的最大值記為ATsmax ;由每一索結構表面溫度實測數據序列通過常規數學計算得到每一個索結構表面點的溫度關于時間的變化率,每一個索結構表面點的溫度關于時間的變化率也隨著時間變化。通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的、在同一時刻、HBE個“索結構沿厚度的溫度分布數據”后,計算在每一個選取的海拔高度處共計BE個“相同海拔高度索結構沿厚度的溫度分布數據”中的最高溫度與最低溫度的差值,這個差值的絕對值稱為“相同海拔高度處索 結構厚度方向最大溫差”,選取了 H個不同的海拔高度就有H個“相同海拔高度處索結構厚度方向最大溫差”,稱這H個“相同海拔高度處索結構厚度方向最大溫差”中的最大值為“索結構厚度方向最大溫差”,記為ATtmax。第三步,測量計算獲得索結構穩態溫度數據;首先,確定獲得索結構穩態溫度數據的時刻,與決定獲得索結構穩態溫度數據的時刻相關的條件有六項,第一項條件是獲得索結構穩態溫度數據的時刻介于當日日落時刻到次日日出時刻后30分鐘之間,日落時刻是指根據地球自轉和公轉規律確定的氣象學上的日落時刻,可以查詢資料或通過常規氣象學計算得到所需的每一日的日落時刻;第二項條件的a條件是在當日日出時刻到次日日出時刻后30分鐘之間的這段時間內,參考平板最大溫差ATpmaj^P索結構表面最大溫差ATsmax都不大于5攝氏度;第二項條件的b條件是在當日日出時刻到次日日出時刻后30分鐘之間的這段時間內,在前面測量計算得到的環境最大誤差不大于參考日溫差Λ ;,且參考平板最大溫差Λ Tpmax減去2攝氏度后不大于Δ Temax,且索結構表面最大溫差Δ Tsmax不大于只需滿足第二項的a條件和b條件中的一項就稱為滿足第二項條件;第三項條件是在獲得索結構穩態溫度數據的時刻,索結構所在環境的氣溫關于時間的變化率的絕對值不大于每小時O. I攝氏度;第四項條件是在獲得索結構穩態溫度數據的時刻,R個索結構表面點中的每一個索結構表面點的溫度關于時間的變化率的絕對值不大于每小時O. I攝氏度;第五項條件是在獲得索結構穩態溫度數據的時刻,R個索結構表面點中的每一個索結構表面點的索結構表面溫度實測數據為當日日出時刻到次日日出時刻后30分鐘之間的極小值;第六項條件是在獲得索結構穩態溫度數據的時刻,“索結構厚度方向最大溫差” ATtmax不大于I攝氏度;本方法利用上述六項條件,將下列三種時刻中的任意一種稱為“獲得索結構穩態溫度數據的數學時刻”,第一種時刻是滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第一項至第五項條件的時刻,第二種時刻是僅僅滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第六項條件的時刻,第三種時刻是同時滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第一項至第六項條件的時刻;當獲得索結構穩態溫度數據的數學時刻就是本方法中實際記錄數據時刻中的一個時,獲得索結構穩態溫度數據的時刻就是獲得索結構穩態溫度數據的數學時刻;如果獲得索結構穩態溫度數據的數學時刻不是本方法中實際記錄數據時刻中的任一個時刻,則取本方法最接近于獲得索結構穩態溫度數據的數學時刻的那個實際記錄數據的時刻為獲得索結構穩態溫度數據的時刻;本方法將使用在獲得索結構穩態溫度數據的時刻測量記錄的量進行索結構相關健康監測分析;本方法近似認為獲得索結構穩態溫度數據的時刻的索結構溫度場處于穩態,即此時刻的索結構溫度不隨時間變化,此時刻就是本方法的“獲得索結構穩態溫度數據的時刻”;然后,根據索結構傳熱特性,利用獲得索結構穩態溫度數據的時刻的“R個索結構表面溫度實測數據”和“HBE個索結構沿厚度溫度實測數據”,利用索結構的傳熱學計算模型,通過常規傳熱計算得到在獲得索結構穩態溫度數據的時刻的索結構的溫度分布,此時索結構的溫度場按穩態進行計算,計算得到的在獲得索結構穩態溫度數據的時刻的索結構的溫度分布數據包括索結構上R個索結構表面點的計算溫度,R個索結構表面點的計算溫度稱為R個索結構穩態表面溫度計算數據,還包括索結構在前面選定的HBE個“測量索結構沿厚度的溫度分布數據的點”的計算溫度,HBE個“測量索結構沿厚度的溫度分布數據的點”的計算溫度稱為“HBE個索結構沿厚度溫度計算數據”,當R個索結構表面溫度實測數據與R個索結構穩態表面溫度計算數據對應相等時,且“HBE個索結構沿厚度溫度實測數據”與“HBE個索結構沿厚度溫度計算數據”對應相等時,計算得到的在獲得索結構穩態溫度數據的時刻的索結構的溫度分布數據在本方法中稱為“索結構穩態溫度數據”, 此時的“R個索結構表面溫度實測數據”稱為“R個索結構穩態表面溫度實測數據”,“HBE個索結構沿厚度溫度實測數據”稱為“HBE個索結構沿厚度穩態溫度實測數據”;在索結構的表面上取“R個索結構表面點”時,“R個索結構表面點”的數量與分布必須滿足三個條件,第一個條件是當索結構溫度場處于穩態時,當索結構表面上任意一點的溫度是通過“R個索結構表面點”中與索結構表面上該任意點相鄰的點的實測溫度線性插值得到時,線性插值得到的索結構表面上該任意點的溫度與索結構表面上該任意點的實際溫度的誤差不大于5% ;索結構表面包括支承索表面;第二個條件是“R個索結構表面點”中在同一海拔高度的點的數量不小于4,且“R個索結構表面點”中在同一海拔高度的點沿著索結構表面均布;“R個索結構表面點”沿海拔高度的所有兩兩相鄰索結構表面點的海拔高度之差的絕對值中的最大值Ah不大于0.2°C除以Λ Th得到的數值,為方便敘述取Λ Th的單位為。C/m,為方便敘述取Ah的單位為m ;“R個索結構表面點”沿海拔高度的兩兩相鄰索結構表面點的定義是指只考慮海拔高度時,在“R個索結構表面點”中不存在一個索結構表面點,該索結構表面點的海拔高度數值介于兩兩相鄰索結構表面點的海拔高度數值之間;第三個條件是查詢或按氣象學常規計算得到索結構所在地和所在海拔區間的日照規律,再根據索結構的幾何特征及方位數據,在索結構上找到全年受日照時間最充分的那些表面點的位置,“R個索結構表面點”中至少有一個索結構表面點是索結構上全年受日照時間最充分的那些表面點中的一個點。2.建立索結構的初始力學計算基準模型A。(例如有限元基準模型)和當前初始力學計算基準模型(例如有限元基準模型)的方法,建立與A。對應的被監測量初始數值向量C。的方法,建立與Attj對應的被監測量當前初始數值向量Cttj的方法。在本方法中A。和C。是不變的。Attj和Cttj是不斷更新的。建立A。和C。、建立和更新Attj和Cttj的方法如下。設索系統中共有N根支承索,結構索力數據就由N根支承索的索力來描述。
本方法通過監測N根支承索的索力來實現受損索的識別,為方便起見,在本方法中將“結構的被監測的索力數據”簡稱為“被監測量”。在后面提到“被監測量的某某矩陣或某某向量”時,也可讀成“索力的某某矩陣或某某向量”。本方法中稱共有M個被監測量,本方法中M等于N。建立初始力學計算基準模型A。時,在索結構竣工之時,或者在建立健康監測(受損索識別)系統前,按照“本方法的索結構的溫度測量計算方法”測量計算得到“索結構穩態溫度數據”(可以用常規溫度測量方法測量,例如使用熱電阻測量),此時的“索結構穩態溫度數據”用向量T。表示,稱為初始索結構穩態溫度數據向量T。。在實測得到T。的同吋,也就是在獲得索結構穩態溫度數據的時刻的同一時刻,使用常規方法直接測量計算得到索結構的所有被監測量的初始數。使用常規方法(查資料或實測)得到索結構所使用的各種材料的隨溫度變化的物理參數(例如熱膨脹系數)和力學性能參數(例如彈性模量、泊松比);在實測計算得到初始索結構穩態溫度數據向量T。的同吋,也就是在獲得索結構穩態溫度數據的時刻的同一時刻,使用常規方法實測計算得到索結構的實測計算數據。索結構的實測計算數據包括支承索的無損檢測數據等能夠表達索的健康狀態的數據、索結構初始幾何數據、索力數據、拉桿拉カ數據、初始索結構支座空間坐標數據、初始索結構支座角坐標數據、索結構模態數據、結構應變數據、結構角坐標測量數據、結構空間坐標測量數據等實測數據。索結構的初始幾何數據可以是所有索的端點的空間坐標數據加上結構上一系列的點的空間坐標數據,目的在于根據這些坐標數據確定索結構的幾何特征。對斜拉橋而言,初始幾何數據可以是所有索的端點的空間坐標數據加上橋梁兩端上若干點的空間坐標數據,這就是所謂的橋型數據。利用支承索的無損檢測數據等能夠表達索的健康狀態的數據建立索系統初始損傷向量d。(如式(I)所示),用d。表示索結構(用初始力學計算基準模型A。表示)的索系統的初始健康狀態。如果沒有索的無損檢測數據及其他能夠表達支承索的健康狀態的數據時,或者可以認為結構初始狀態為無損傷狀態吋,向量d。的各元素數值取O。利用索結構的設計圖、竣工圖和初始索結構的實測數據、支承索的無損檢測數據、索結構所使用的各種材料的隨溫度變化的物理和力學性能參數和初始索結構穩態溫度數據向量T。,利用力學方法(例如有限元法)計入“索結構穩態溫度數據”建立初始力學計算基準模型A。。初始索結構支座角坐標數據組成初始索結構支座角坐標向量U。。d。= [dol do2 · · · dQj · · · doN]T(I)式(I)中C^U=I, 2,3,.......,N)表示初始力學計算基準模型A。中的索系統的
第j根索的初始損傷值,dOJ為O時表示第j根索無損傷,為100%時表示該索徹底喪失承載能力,介于O與100%之間時表示第j根索喪失相應比例的承載能力,T表示向量的轉置(后同)。在實測得到T。的同時,也就是在獲得索結構穩態溫度數據的時刻的同一時刻,使用常規方法直接測量計算得到的索結構的所有被監測量的初始數值,組成被監測量初始數值向量C。(見式(2))。要求在獲得A。的同時獲得C。,被監測量初始數值向量C。表示對應于A0的“被監測量”的具體數值。因在前述條件下,基于索結構的計算基準模型計算所得的被監測量可靠地接近于初始被監測量的實測數據,在后面的敘述中,將用同一符號來表示該計算值和實測值。
C0= [C01 C02 ·· · Coj · · · C0Jt(2)
式(2)中CJj=I, 2,3,.......,Μ)是索結構中第j個被監測量的初始量,該分量
依據編號規則對應于特定的第j個被監測量。不論用何種方法獲得初始力學計算基準模型A。,計入“索結構穩態溫度數據”(即初始索結構穩態溫度數據向量T。)、基于A。計算得到的索結構計算數據必須非常接近其實測數據,誤差一般不得大于5%。這樣可保證利用A。計算所得的模擬情況下的索カ計算數據、應變計算數據、索結構形狀計算數據和位移計算數據、索結構角度數據、索結構空間坐標數據等,可靠地接近所模擬情況真實發生時的實測數據。模型A。中支承索的健康狀態用索系統初始損傷向量d。表示,索結構穩態溫度數據用初始索結構穩態溫度數據向量T。表示。由于基于A。計算得到所有被監測量的計算數值非常接近所有被監測量的初始數值(實測得到),所以也可以用在A。的基礎上、進行力學計算得到的、A0的每ー個被監測量的計算數值組成被監測量初始數值向量C。。可以說T。、U。和d。是A。的參數,C。由 A。的力學計算結果組成。建立和更新當前初始力學計算基準模型Attj的方法是在初始時刻(也就是第一次建立At0吋),At0就等于A。,At0對應的“索結構穩態溫度數據”記為“當前初始索結構穩態溫度數據向量IV’,在初始時刻,Tttj就等于T。,向量Tttj的定義方式與向量T。的定義方式相同。對應于索結構的當前初始力學計算基準模型Attj的索結構支座角坐標數據組成當前初始索結構支座角坐標向量げ。,在初始時刻也就是第一次建立索結構的當前初始力學計算基準模型Attj時,Ut0就等于U。。At0的支承索的初始健康狀態與A。的支承索的健康狀態相同,也用索系統初始損傷向量d。表示,在后面的循環過程中At0的支承索的初始健康狀態始終用索系統初始損傷向量d。表示;索結構處于Attj狀態時,本方法用被監測量當前初始數值向量C。表示所有被監測量的具體數值,Ct0的元素與C。的元素一一對應,分別表示所有被監測量在索結構處于At0和A。兩種狀態時的具體數值。在初始時刻,Cttj就等于C。,Tt0^Ut0和d。是At0的參數,Cttj由Attj的力學計算結果組成;在索結構服役過程中,按照“本方法的索結構的溫度測量計算方法”不斷實測計算獲得“索結構穩態溫度數據”的當前數據(稱為“當前索結構穩態溫度數據向量Tt'向量Tt的定義方式與向量T。的定義方式相同);在得到向量Tt的同吋,實測得到索結構支座角坐標當前數據,所有索結構支座角坐標當前數據組成當前索結構實測支座角坐標向量Ut ;如果Tt等于Tttj且Ut等于U',則不需要對Attj進行更新,否則需要對At0^Ut0和Tt0進行更新,更新方法是第一步計算Ut與U。的差,Ut與U。的差就是索結構支座關于初始位置的當前支座角位移,用支座角位移向量V表示支座角位移,支座角位移向量V中的元素與支座角位移分量之間是一一對應關系,支座角位移向量V中ー個元素的數值對應于ー個指定支座的ー個指定方向的角位移;第二步計算Tt與T。的差,Tt與T。的差就是當前索結構穩態溫度數據關于初始索結構穩態溫度數據的變化,Tt與T。的差用穩態溫度變化向量S表示,S等于Tt減去T。,S表示索結構穩態溫度數據的變化;第三步先對A。中的索結構支座施加當前支座角位移約束,當前支座角位移約束的數值就取自支座角位移向量V中對應元素的數值,再對A。中的索結構施加溫度變化,施加的溫度變化的數值就取自穩態溫度變化向量S,對A。中索結構支座施加支座角位移約束且對A。中的索結構施加的溫度變化后得到更新的當前初始力學計算基準模型#。,更新At0的同吋,Ut0所有元素數值也用Ut所有元素數值對應代替,即更新了 U', Tt0所有元素數值也用Tt的所有元素數值對應代替,即更新了 "。,這樣就得到了正確地對應于Attj的Tttj ;更新Cttj的方法是當更新Attj后,通過カ學計算得到Attj中所有被監測量的、當前的具體數值,這些具體數值組成C。。索結構中所有被監測量的當前值組成被監測量當前數值向量C (定義見式(3))。C = [C1 C2 · · · Cj · · · CJt(3)式(3)中Cjj=I, 2,3,.......,Μ)是索結構中第j個被監測量的當前值,該分量
依據編號規則與Cd對應于同一“被監測量”。在實測得到當前索結構穩態溫度數據向量Tt的同一時刻,實測得到索結構的所有被監測量的當前實測數值,組成被監測量當前數值向量C。3.建立和更新索結構單位損傷被監測量變化矩陣AC的方法。索結構單位損傷被監測量變化矩陣AC是不斷更新的,即在更新當前初始力學計算基準模型Attj和被監測量當前初始數值向量Cttj的同吋,更新索結構單位損傷被監測量變化矩陣AC。具體方法如下在索結構的當前初始力學計算基準模型Attj的基礎上進行若干次計算,計算次數數值上等于所有支承索的數量。每一次計算假設索系統中只有一根支承索在初始損傷(用向量d。的對應元素表示)的基礎上再增加單位損傷Du (例如取5%、10%、20%或30%等損傷為單位損傷),每一次計算中出現損傷的索不同于其它次計算中出現損傷的索,每一次計算都利用力學方法(例如有限元法)計算索結構的所有被監測量的當前計算值,每一次計算得到的所有被監測量的當前計算值組成ー個被監測量計算當前向量(當假設第i根索有単位損傷時,可用式(4)表示被監測量計算當前向量Cti);每一次計算得到被監測量計算當前向量減去被監測量當前初始數值向量Cttj,所得向量就是此條件下(以有単位損傷的支承索的位置或編號等為標記)的被監測量變化向量(當第i根索有単位損傷時,用δ C1表示被監測量變化向量,定義見式(5)),被監測量變化向量的每ー元素表示由于計算時假定有單位損傷的那根索的単位損傷而引起的該元素所對應的被監測量的改變量;有N根索就有N個被監測量變化向量,由于有N個被監測量,所以每個被監測量變化向量有N個元素,由這N個被監測量變化向量依次組成有MXN個元素的單位損傷被監測量變化矩陣AC,Λ C的定義如式(6)所示。
權利要求
1. 一種支座角位移溫度變化時基于索力監測的松弛索識別方法,其特征在于所述方法包括 a.設共有N根支承索,首先確定支承索的編號規則,按此規則將索結構中所有的支承索編號,該編號在后續步驟中將用于生成向量和矩陣;本方法通過監測N根支承索的索力來實現受損索的識別,為方便起見,在本方法中將索結構的被監測的支承索的索力數據簡稱為“被監測量”;在后面提到“被監測量的某某矩陣或某某向量”時,也可讀成“索力的某某矩陣或某某向量”;本方法中對同一個量實時監測的任何兩次測量之間的時間間隔不得大于30分鐘,測量記錄數據的時刻稱為實際記錄數據時刻; b.本方法定義“本方法的索結構的溫度測量計算方法”按步驟bl至b3進行; bl :查詢或實測得到索結構組成材料及索結構所處環境的隨溫度變化的傳熱學參數,利用索結構的設計圖、竣工圖和索結構的幾何實測數據,利用這些數據和參數建立索結構的傳熱學計算模型;查詢索結構所在地不少于2年的近年來的氣象資料,統計得到這段時 間內的陰天數量記為T個陰天,在本方法中將白天不能見到太陽的一整日稱為陰天,統計得到T個陰天中每一個陰天的0時至次日日出時刻后30分鐘之間的最高氣溫與最低氣溫,日出時刻是指根據地球自轉和公轉規律確定的氣象學上的日出時刻,不表示當天一定可以看見太陽,可以查詢資料或通過常規氣象學計算得到所需的每一日的日出時刻,每一個陰天的0時至次日日出時刻后30分鐘之間的最高氣溫減去最低氣溫稱為該陰天的日氣溫的最大溫差,有T個陰天,就有T個陰天的日氣溫的最大溫差,取T個陰天的日氣溫的最大溫差中的最大值為參考日溫差,參考日溫差記為查詢索結構所在地和所在海拔區間不少于2年的近年來的氣象資料或實測得到索結構所處環境的溫度隨時間和海拔高度的變化數據和變化規律,計算得到索結構所在地和所在海拔區間不少于2年的近年來的索結構所處環境的溫度關于海拔高度的最大變化率△ Th,為方便敘述取ATh的單位為。C/m;在索結構的表面上取“R個索結構表面點”,取“R個索結構表面點”的具體原則在步驟b3中敘述,后面將通過實測得到這R個索結構表面點的溫度,稱實測得到的溫度數據為“R個索結構表面溫度實測數據”,如果是利用索結構的傳熱學計算模型,通過傳熱計算得到這R個索結構表面點的溫度,就稱計算得到的溫度數據為“R個索結構表面溫度計算數據”;從索結構所處的最低海拔到最高海拔之間,在索結構上均布選取不少于三個不同的海拔高度,在每一個選取的海拔高度處、在水平面與索結構表面的交線處至少選取兩個點,從選取點處引索結構表面的外法線,所有選取的外法線方向稱為“測量索結構沿壁厚的溫度分布的方向”,測量索結構沿壁厚的溫度分布的方向與“水平面與索結構表面的交線”相交,在選取的測量索結構沿壁厚的溫度分布的方向中必須包括索結構的向陽面外法線方向和索結構的背陰面外法線方向,沿每一個測量索結構沿壁厚的溫度分布的方向在索結構中均布選取不少于三個點,特別的,對于支承索沿每一個測量索結構沿壁厚的溫度分布的方向僅僅取一個點,即僅僅測量支承索的表面點的溫度,測量所有被選取點的溫度,測得的溫度稱為“索結構沿厚度的溫度分布數據”,其中沿與同一“水平面與索結構表面的交線”相交的、“測量索結構沿壁厚的溫度分布的方向”測量獲得的“索結構沿厚度的溫度分布數據”,在本方法中稱為“相同海拔高度索結構沿厚度的溫度分布數據”,設選取了 H個不同的海拔高度,在每一個海拔高度處,選取了 B個測量索結構沿壁厚的溫度分布的方向,沿每個測量索結構沿壁厚的溫度分布的方向在索結構中選取了 E個點,其中H和E都不小于3,B不小于2,特別的,對于支承索E等于1,計索結構上“測量索結構沿厚度的溫度分布數據的點”的總數為HBE個,后面將通過實測得到這HBE個“測量索結構沿厚度的溫度分布數據的點”的溫度,稱實測得到的溫度 數據為“HBE個索結構沿厚度溫度實測數據”,如果是利用索結構的傳熱學計算模型,通過傳熱計算得到這HBE個測量索結構沿厚度的溫度分布數據的點的溫度,就稱計算得到的溫度數據為“HBE個索結構沿厚度溫度計算數據”;本方法中將在每一個選取的海拔高度處“相同海拔高度索結構沿厚度的溫度分布數據”的個數溫度分布數據”;在索結構所在地按照氣象學測量氣溫要求選取一個位置,將在此位置實測得到符合氣象學測量氣溫要求的索結構所在環境的氣溫;在索結構所在地的空曠無遮擋處選取一個位置,該位置應當在全年的每一日都能得到該地所能得到的該日的最充分的日照,在該位置安放一塊碳鋼材質的平板,稱為參考平板,參考平板與地面不可接觸,參考平板離地面距離不小于I. 5米,該參考平板的一面向陽,稱為向陽面,參考平板的向陽面是粗糙的和深色的,參考平板的向陽面應當在全年的每一日都能得到一塊平板在該地所能得到的該日的最充分的日照,參考平板的非向陽面覆有保溫材料,將實時監測得到參考平板的向陽面的溫度; b2 :實時監測得到上述R個索結構表面點的R個索結構表面溫度實測數據,同時實時監測得到前面定義的索結構沿厚度的溫度分布數據,同時實時監測得到符合氣象學測量氣溫要求的索結構所在環境的氣溫數據;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的索結構所在環境的氣溫實測數據序列,索結構所在環境的氣溫實測數據序列由當日日出時刻到次日日出時刻后30分鐘之間的索結構所在環境的氣溫實測數據按照時間先后順序排列,找到索結構所在環境的氣溫實測數據序列中的最高溫度和最低溫度,用索結構所在環境的氣溫實測數據序列中的最高溫度減去最低溫度得到索結構所在環境的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,稱為環境最大溫差,記為AT6max ;由索結構所在環境的氣溫實測數據序列通過常規數學計算得到索結構所在環境的氣溫關于時間的變化率,該變化率也隨著時間變化;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的參考平板的向陽面的溫度的實測數據序列,參考平板的向陽面的溫度的實測數據序列由當日日出時刻到次日日出時刻后30分鐘之間的參考平板的向陽面的溫度的實測數據按照時間先后順序排列,找到參考平板的向陽面的溫度的實測數據序列中的最高溫度和最低溫度,用參考平板的向陽面的溫度的實測數據序列中的最高溫度減去最低溫度得到參考平板的向陽面的溫度的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,稱為參考平板最大溫差,記為ATpmax ;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的所有R個索結構表面點的索結構表面溫度實測數據序列,有R個索結構表面點就有R個索結構表面溫度實測數據序列,每一個索結構表面溫度實測數據序列由一個索結構表面點的當日日出時刻到次日日出時刻后30分鐘之間的索結構表面溫度實測數據按照時間先后順序排列,找到每一個索結構表面溫度實測數據序列中的最高溫度和最低溫度,用每一個索結構表面溫度實測數據序列中的最高溫度減去最低溫度得到每一個索結構表面點的溫度的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,有R個索結構表面點就有R個當日日出時刻到次日日出時刻后30分鐘之間的最大溫差數值,其中的最大值稱為索結構表面最大溫差,記為ATsmax ;由每一索結構表面溫度實測數據序列通過常規數學計算得到每一個索結構表面點的溫度關于時間的變化率,每一個索結構表面點的溫度關于時間的變化率也隨著時間變化;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的、在同一時刻、HBE個“索結構沿厚度的溫度分布數據”后,計算在每一個選取的海拔高度處共計BE個“相同海拔高度索結構沿厚度的溫度分布數據”中的最高溫度與最低溫度的差值,這個差值的絕對值稱為“相同海拔高度處索結構厚度方向最大溫差”,選取了 H個不同的海拔高度就有H個“相同海拔高度處索結構厚度方向最大溫差”,稱這H個“相同海拔高度處索結構厚度方向最大溫差”中的最大值為“索結構厚度方向最大溫差”,記為A Ttmax ; b3 :測量計算獲得索結構穩態溫度數據;首先,確定獲得索結構穩態溫度數據的時刻,與決定獲得索結構穩態溫度數據的時刻相關的條件有六項,第一項條件是獲得索結構穩態溫度數據的時刻介于當日日落時刻到次日日出時刻后30分鐘之間,日落時刻是指根據地球自轉和公轉規律確定的氣象學上的日落時刻,可以查詢資料或通過常規氣象學計算得到所需的每一日的日落時刻;第二項條件的a條件是在當日日出時刻到次日日出時刻后30分鐘之間的這段時間內,參考平板最大溫差八1;_和索結構表面最大溫差ATsmax都不大于5攝氏度;第二項條件的b條件是在當日日出時刻到次日日出時刻后30分鐘之間的這段時間內,在前面測量計算得到的環境最大誤差ATraiax不大于參考日溫差A I;,且參考平板最大溫差ATpmax減去2攝氏度后不大于A T6max,且索結構表面最大溫差ATsmax不大于ATpmax;只需滿足第二項的a條件和b條件中的一項就稱為滿足第二項條件;第三項條件是在獲得索結構穩態溫度數據的時刻,索結構所在環境的氣溫關于時間的變化率的絕對值不大于每小時0. I攝氏度;第四項條件是在獲得索結構穩態溫度數據的時刻,R個索結構表面點中的每一個索結構表面點的溫度關于時間的變化率的絕對值不大于每小時0. I攝氏度;第五項條件是在獲得索結構穩態溫度數據的時刻,R個索結構表面點中的每一個索結構表面點的索結構表面溫度實測數據為當日日出時刻到次日日出時刻后30分鐘之間的極小值;第六項條件是在獲得索結構穩態溫度數據的時刻,“索結構厚度方向最大溫差” A Ttmax不大于I攝氏度;本方法利用上述六項條件,將下列三種時刻中的任意一種稱為“獲得索結構穩態溫度數據的數學時刻”,第一種時刻是滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第一項至第五項條件的時刻,第二種時刻是僅僅滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第六項條件的時刻,第三種時刻是同時滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第一項至第六項條件的時刻;當獲得索結構穩態溫度數據的數學時刻就是本方法中實際記錄數據時刻中的一個時,獲得索結構穩態溫度數據的時刻就是獲得索結構穩態溫度數據的數學時刻;如果獲得索結構穩態溫度數據的數學時刻不是本方法中實際記錄數據時刻中的任一個時刻,則取本方法最接近于獲得索結構穩態溫度數據的數學時刻的那個實際記錄數據的時刻為獲得索結構穩態溫度數據的時刻;本方法將使用在獲得索結構穩態溫度數據的時刻測量記錄的量進行索結構相關健康監測分析;本方法近似認為獲得索結構穩態溫度數據的時刻的索結構溫度場處于穩態,即此時刻的索結構溫度不隨時間變化,此時刻就是本方法的“獲得索結構穩態溫度數據的時刻”;然后,根據索結構傳熱特性,利用獲得索結構穩態溫度數據的時刻的“R個索結構表面溫度實測數據”和“HBE個索結構沿厚度溫度實測數據”,利用索結構的傳熱學計算模型,通過常規傳熱計算得到在獲得索結構穩態溫度數據的時刻的索結構的溫度分布,此時 索結構的溫度場按穩態進行計算,計算得到的在獲得索結構穩態溫度數據的時刻的索結構的溫度分布數據包括索結構上R個索結構表面點的計算溫度,R個索結構表面點的計算溫度稱為R個索結構穩態表面溫度計算數據,還包括索結構在前面選定的HBE個“測量索結構沿厚度的溫度分布數據的點”的計算溫度,HBE個“測量索結構沿厚度的溫度分布數據的點”的計算溫度稱為“HBE個索結構沿厚度溫度計算數據”,當R個索結構表面溫度實測數據與R個索結構穩態表面溫度計算數據對應相等時,且“HBE個索結構沿厚度溫度實測數據”與“HBE個索結構沿厚度溫度計算數據”對應相等時,計算得到的在獲得索結構穩態溫度數據的時刻的索結構的溫度分布數據在本方法中稱為“索結構穩態溫度數據”,此時的“R個索結構表面溫度實測數據”稱為“R個索結構穩態表面溫度實測數據”,“HBE個索結構沿厚度溫度實測數據”稱為“HBE個索結構沿厚度穩態溫度實測數據”;在索結構的表面上取“R個索結構表面點”時,“R個索結構表面點”的數量與分布必須滿足三個條件,第一個條件是當索結構溫度場處于穩態時,當索結構表面上任意一點的溫度是通過“R個索結構表面點”中與索結構表面上該任意點相鄰的點的實測溫度線性插值得到時,線性插值得到的索結構表面上該任意點的溫度與索結構表面上該任意點的實際溫度的誤差不大于5% ;索結構表面包括支承索表面;第二個條件是“R個索結構表面點”中在同一海拔高度的點的數量不小于4,且“R個索結構表面點”中在同一海拔高度的點沿著索結構表面均布;“R個索結構表面點”沿海拔高度的所有兩兩相鄰索結構表面點的海拔高度之差的絕對值中的最大值Ah 不大于0.2°C除以A Th得到的數值,為方便敘述取A Th的單位為。C/m,為方便敘述取Ah的單位為m ;“R個索結構表面點”沿海拔高度的兩兩相鄰索結構表面點的定義是指只考慮海拔高度時,在“R個索結構表面點”中不存在一個索結構表面點,該索結構表面點的海拔高度數值介于兩兩相鄰索結構表面點的海拔高度數值之間;第三個條件是查詢或按氣象學常規計算得到索結構所在地和所在海拔區間的日照規律,再根據索結構的幾何特征及方位數據,在索結構上找到全年受日照時間最充分的那些表面點的位置,“R個索結構表面點”中至少有一個索結構表面點是索結構上全年受日照時間最充分的那些表面點中的一個點; c.按照“本方法的索結構的溫度測量計算方法”直接測量計算得到初始狀態下的索結構穩態溫度數據,初始狀態下的索結構穩態溫度數據稱為初始索結構穩態溫度數據,記為“初始索結構穩態溫度數據向量T。” ;實測或查資料得到索結構所使用的各種材料的隨溫度變化的物理和力學性能參數;在實測得到初始索結構穩態溫度數據向量T。的同一時刻,直接測量計算得到所有支承索的初始索力,組成初始索力向量F。;依據索結構設計數據、竣工數據得到所有支承索在自由狀態即索力為O時的長度、在自由狀態時的橫截面面積和在自由狀態時的單位長度的重量,以及獲得這三種數據時所有支承索的溫度,在此基礎上利用所有支承索的隨溫度變化的物理性能參數和力學性能參數,按照常規物理計算得到所有支承索在初始索結構穩態溫度數據向量T。條件下的索力為O時所有支承索的長度、索力為O時所有支承索的橫截面面積以及索力為O時所有支承索的單位長度的重量,依次組成支承索的初始自由長度向量、初始自由橫截面面積向量和初始自由單位長度的重量向量,支承索的初始自由長度向量、初始自由橫截面面積向量和初始自由單位長度的重量向量的元素的編號規則與初始索力向量F。的元素的編號規則相同;在實測得到T。的同時,也就是在獲得初始索結構穩態溫度數據向量T。的時刻的同一時刻,直接測量計算得到初始索結構的實測數據,初始索結構的實測數據包括表達支承索的健康狀態的無損檢測數據、所有被監測量的初始數值、所有支承索的初始索力數據、初始索結構模態數據、初始索結構應變數據、初始索結構幾何數據、初始索結構支座空間坐標數據、初始索結構支座角坐標數據、初始索結構空間坐標數據;所有被監測量的初始數值組成被監測量初始數值向量C。;利用能表達支承索的健康狀態的無損檢測數據建立索系統初始損傷向量d。,索系統初始損傷向量d。的元素個數等于N, d。的元素與支承索是--對應關系,索系統初始損傷向量d。的元素數值不小于O、不大于100%,d。的元素數值代表對應支承索的損傷程度,若索系統初始損傷向量d。的某一元素的數值為0,表示該元素所對應的支承索是完好的、沒有問題的,若其數值為100%,則表示該元素所對應的支承索完全喪失了承載能力,若其數值介于0和100%之間,則表示該支承索喪失了相應比例的承載能力,如果沒有支承索的無損檢測數據及其他能夠表達支承索的健康狀態的數據時,或者認為索結構初始狀態為無損傷狀態時,向量d。的各元素數值取0 ;若d。的某一元素的數值不為0,則表示該元素所對應的支承索是有問題的,在本方法中該支承索可能是受損也可能是松弛,當該支承索是受損時,該元素數值表示其對應的支承索的損傷程度,若該支承索是松弛時,該元素數值表示其對應的支承索的初始等效損傷程度;索系統初始損傷向量d。的元素的編號規則與初始索力向量F。的元素的編號規則相同;初始索結構支座角坐標數據組成初始索結構支座角坐標向量U。; d.根據索結構的設計圖、竣工圖和初始索結構的實測數據、支承索的無損檢測數據、索結構所使用的各種材料的隨溫度變化的物理和力學性能參數、初始索結構支座角坐標向量U。、初始索結構穩態溫度數據向量T。和和前面步驟得到的所有的索結構數據,建立計入“索結構穩態溫度數據”的索結構的初始力學計算基準模型A。,基于A。計算得到的索結構計算數據必須非常接近其實測數據,其間的差異不得大于5% ;對應于A。的“索結構穩態溫度數據”就是“初始索結構穩態溫度數據向量T。” ;對應于A。的索結構支座角坐標數據就是初始索結構支座角坐標向量U。;對應于A。的支承索健康狀態用索系統初始損傷向量d。表示;對應于A。的所有被監測量的初始數值用被監測量初始數值向量C。表示;第一次建立計入“索結構穩態溫度數據”的索結構的當前初始力學計算基準模型A1。、被監測量當前初始數值向 量C1。和“當前初始索結構穩態溫度數據向量I"。” ;第一次建立索結構的當前初始力學計算基準模型Attj和被監測量當前初始數值向量Cttj時,索結構的當前初始力學計算基準模型Y。就等于索結構的初始力學計算基準模型A。,被監測量當前初始數值向量Cttj就等于被監測量初始數值向量C。W。對應的“索結構穩態溫度數據”稱為“當前初始索結構穩態溫度數據”,記為“當前初始索結構穩態溫度數據向量I"。”,第一次建立索結構的當前初始力學計算基準模型At0時,Tt0就等于T。;對應于索結構的當前初始力學計算基準模型Attj的索結構支座角坐標數據組成當前初始索結構支座角坐標向量Uttj,第一次建立索結構的當前初始力學計算基準模型Attj時,Ut0就等于U。^t0的支承索的初始健康狀態與A。的支承索的健康狀態相同,也用索系統初始損傷向量d。表示,在后面的循環過程中At0的支承索的初始健康狀態始終用索系統初始損傷向量d。表示;當T^U。和d。是A。的參數時,由A。的力學計算結果得到的所有被監測量的初始數值與C。表示的所有被監測量的初始數值相同,因此也可以說C。由A。的力學計算結果組成,當TVUttj和d。是Attj的參數時,Cttj由Attj的力學計算結果組成;在本方法中A。、U。、C。、d。和T。是不變的; e.從這里進入由第e步到第O步的循環;在索結構服役過程中,不斷按照“本方法的索結構的溫度測量計算方法”不斷實測計算獲得“索結構穩態溫度數據”的當前數據,“索結構穩態溫度數據”的當前數據稱為“當前索結構穩態溫度數據”,記為“當前索結構穩態溫度數據向量Tt'向量Tt的定義方式與向量T。的定義方式相同;在實測得到當前索結構穩態溫度數據向量Tt的同一時刻,實測得到索結構中所有支承索的索力數據,所有這些索力數據組成當前索力向量F,向量F的元素與向量F。的元素的編號規則相同;在實測得到當前索結構穩態溫度數據向量Tt的同一時刻,實測計算得到所有支承索的兩個支承端點的空間坐標,兩個支承端點的空間坐標在水平方向分量的差就是兩個支承端點水平距離,所有支承索的兩個支承端點水平距離數據組成當前支承索兩支承端點水平距離向量,當前支承索兩支承端點水平距離向量的元素的編號規則與初始索力向量F。的元素的編號規則相同;在實測得到當前索結構穩態溫度數據向量Tt的同一時刻,實測得到索結構支座角坐標當前數據,所有索結構支座角坐標當前數據組成當前索結構實測支座角坐標向量Ut ; f.根據當前索結構實測支座角坐標向量Ut和當前索結構穩態溫度數據向量Tt,按照步驟fl至f3更新當前初始力學計算基準模型Y。、當前初始索結構支座角坐標向量U1。、被監測量當前初始數值向量Cttj和當前初始索結構穩態溫度數據向量Tttj ; fl.分別比較Ut與U、、Tt與Tt0,如果Ut等于Ut0且Tt等于Tt0,則At0' U'、Ct0和Tt0保 持不變;否則需要按下列步驟對A1。、Ut0和Tttj進行更新; f2.計算Ut與U。的差,Ut與U。的差就是索結構支座關于初始位置的當前支座角位移,用支座角位移向量V表示支座角位移,V等于Ut減去U。,支座角位移向量V中的元素與支座角位移分量之間是對應關系,支座角位移向量V中一個兀素的數值對應于一個指定支座的一個指定方向的角位移;計算Tt與T。的差,Tt與T。的差就是當前索結構穩態溫度數據關于初始索結構穩態溫度數據的變化,Tt與T。的差用穩態溫度變化向量S表示,S等于Tt減去T。,S表示索結構穩態溫度數據的變化; f3.先對A0中的索結構支座施加當前支座角位移約束,當前支座角位移約束的數值就取自支座角位移向量V中對應元素的數值,再對A。中的索結構施加溫度變化,施加的溫度變化的數值就取自穩態溫度變化向量S,對A。中索結構支座施加支座角位移約束且對A。中的索結構施加的溫度變化后得到更新的當前初始力學計算基準模型#。,更新Attj的同時,U1。所有元素數值也用Ut所有元素數值對應代替,即更新了 U', Tt0所有元素數值也用Tt的所有元素數值對應代替,即更新了 I"。,這樣就得到了正確地對應于Attj的Tttj和Ut0 ;更新C1。的方法是當更新Attj后,通過力學計算得到Attj中所有被監測量的、當前的具體數值,這些具體數值組成Cttj .,At0的支承索的初始健康狀態始終用索系統初始損傷向量d。表示; g.在當前初始力學計算基準模型Attj的基礎上按照步驟gl至g4進行若干次力學計算,通過計算獲得索結構單位損傷被監測量變化矩陣A C和單位損傷標量Du ; gl.索結構單位損傷被監測量變化矩陣AC是不斷更新的,即在更新當前初始力學計算基準模型#。、當前初始索結構支座角坐標向量U1。、被監測量當前初始數值向量Cttj和當前初始索結構穩態溫度數據向量I"。之后,必須接著更新索結構單位損傷被監測量變化矩陣A C和單位損傷標量Du ; g2.在索結構的當前初始力學計算基準模型Attj的基礎上進行若干次力學計算,計算次數數值上等于所有索的數量,有N根支承索就有N次計算,每一次計算假設索系統中只有一根支承索有單位損傷標量Du,每一次計算中出現損傷的索不同于其它次計算中出現損傷的索,每一次計算得到索結構中所有被監測量的當前計算值,每一次計算得到的所有被監測量的當前計算值組成一個被監測量計算當前向量,被監測量計算當前向量的元素編號規則與被監測量初始數值向量C。的元素編號規則相同;g3.每一次計算得到的被監測量計算當前向量減去被監測量當前初始數值向量Cttj得到一個被監測量變化向量;有N根支承索就有N個被監測量變化向量; g4.由這N個被監測量變化向量依次組成有N列的索結構單位損傷被監測量變化矩陣AC ;索結構單位損傷被監測量變化矩陣AC的每一列對應于一個被監測量變化向量; h.在實測得到當前索結構穩態溫度數據向量Tt的同時,實測得到在獲得當前索結構穩態溫度數據向量Tt的時刻的同一時刻的索結構的所有被監測量的當前實測數值,組成被監測量當前數值向量C ;被監測量當 前數值向量C和被監測量當前初始數值向量Cttj與被監測量初始數值向量C。的定義方式相同,三個向量的相同編號的元素表示同一被監測量在不同時刻的具體數值; i.定義索系統當前名義損傷向量山索系統當前名義損傷向量d的元素個數等于支承索的數量,索系統當前名義損傷向量d的元素和支承索之間是一一對應關系,索系統當前名義損傷向量d的元素數值代表對應支承索的名義損傷程度或名義健康狀態;向量d的元素的編號規則與向量d。的元素的編號規則相同; j.依據被監測量當前數值向量C同被監測量當前初始數值向量C1。、索結構單位損傷被監測量變化矩陣AC、單位損傷標量Du和待求的索系統當前名義損傷向量d間存在的近似線性關系,該近似線性關系可表達為式1,式I中除d外的其它量均為已知,求解式I就可以算出索系統當前名義損傷向量d ; C = C: +士 u k.定義索系統當前實際損傷向量d%索系統當前實際損傷向量da的元素個數等于支承索的數量,索系統當前實際損傷向量da的元素和支承索之間是一一對應關系,索系統當前實際損傷向量da的元素數值代表對應支承索的實際損傷程度或實際健康狀態;向量da的元素的編號規則與向量d。的元素的編號規則相同; I.利用式2表達的索系統當前實際損傷向量da的第j個元素同索系統初始損傷向量d。的第j個元素doj和索系統當前名義損傷向量d的第j個元素Clj間的關系,計算得到索系統當前實際損傷向量da的所有元素; "=1-(1-< )(1-./ )式 2 式2中j=l,2,3,.......,N,Cfj為O時表示第j根支承索無健康問題,Claj數值不為O時表示第j根支承索是有健康問題的支承索,有健康問題的支承索可能是松弛索、也可能是受損索,其數值反應了松弛或損傷的程度;索系統當前實際損傷向量da的元素數值不小于O、不大于100%,索系統當前實際損傷向量da的元素數值代表對應支承索的損傷程度,若索系統當前實際損傷向量da的某一元素的數值為0,表示該元素所對應的支承索是完好的,若其數值為100%,則表示該元素所對應的支承索完全喪失了承載能力,若其數值介于0和100%之間,則表示該元素所對應的支承索是有健康問題的,在本方法中該支承索的健康問題可能是受損了也可能是松弛了,當該支承索是受損時,該元素數值表示其對應的支承索的損傷程度,若該支承索是松弛時,該元素數值表示其對應的支承索的與其松弛程度力學等效的當前實際等效損傷程度; m.從第I步中識別出的有問題的支承索中鑒別出受損索,剩下的就是松弛索; n.利用在當前索結構穩態溫度數據向量Tt條件下的在第I步獲得的索系統當前實際損傷向量da得到松弛索的與其松弛程度力學等效的當前實際等效損傷程度,利用在第e步獲得的在當前索結構穩態溫度數據向量Tt條件下的當前索力向量F和當前支承索兩支承端點水平距離向量,利用在第c步獲得的在初始索結構穩態溫度數據向量T。條件下的支承索的初始自由長度向量、初始自由橫截面面積向量和初始自由單位長度的重量向量,利用當前索結構穩態溫度數據向量Tt表示的支承索當前穩態溫度數據,利用在第c步獲得的在初始索結構穩態溫度數據向量T。表示的支承索初始穩態溫度數據,利用在第c步獲得的索結構所使用的各種材料的隨溫度變化的物理和力學性能參數,計入溫度變化對支承索物理、力學和幾何參數的影響,通過將松弛索同受損索進行力學等效來計算松弛索的、與當前實際等效損傷程度等效的松弛程度,等效的力學條件是一、兩等效的索的無松弛和無損傷時的初始自由長度、幾何特性參數、密度及材料的力學特性參數相同;二、松弛或損傷后,兩等效的松弛索和損傷索的索力和變形后的總長相同;滿足上述兩個等效條件時,這樣的兩根支承索在索結構中的力學功能就是完全相同的,即如果用等效的松弛索代替受損索后,索結構不會發生任何變化,反之亦然;依據前述力學等效條件求得那些被判定為松弛索的松弛程度,松弛程度就是支承索自由長度的改變量,也就是確定了那些需調整索力的支承索的索長調整量;這樣就實現了支承索的松弛識別和損傷識別;計算時所需索力由當前索力向量F對應元素給出; o.回到第e步,開始由第e步到第O步的下一次循環。
全文摘要
支座角位移溫度變化時基于索力監測的松弛索識別方法基于索力監測,通過監測支座角位移、索結構溫度和環境溫度來決定是否需要更新索結構的力學計算基準模型,得到計入支座角位移、索結構溫度和環境溫度的索結構的力學計算基準模型,在此模型的基礎上計算獲得單位損傷被監測量變化矩陣。依據被監測量當前數值向量同被監測量當前初始數值向量、單位損傷被監測量變化矩陣、單位損傷標量和待求的索系統當前名義損傷向量間存在的近似線性關系算出索系統當前名義損傷向量的非劣解,在使用無損檢測方法鑒別出真實受損索后,剩下的有健康問題的索就是松弛索。
文檔編號G01K13/00GK102706676SQ20121017493
公開日2012年10月3日 申請日期2012年5月30日 優先權日2012年5月30日
發明者王芳, 鄭可, 韓佳邑, 韓玉林 申請人:東南大學